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The influence of helicity on the stability of scaling regimes, on the effective diffusivity, and on the anoma-
lous scaling of structure functions of a passive scalar advected by a Gaussian solenoidal velocity field with
finite correlation time is investigated by the field theoretic renormalization group and operator-product expan-
sion within the two-loop approximation. The influence of helicity on the scaling regimes is discussed and
shown in the plane of exponents �-�, where � characterizes the energy spectrum of the velocity field in the
inertial range E�k1−2�, and � is related to the correlation time at the wave number k, which is scaled as k−2+�.
The restrictions given by nonzero helicity on the regions with stable fixed points that correspond to the scaling
regimes are analyzed in detail. The dependence of the effective diffusivity on the helicity parameter is dis-
cussed. The anomalous exponents of the structure functions of the passive scalar field which define their
anomalous scaling are calculated and it is shown that, although the separate composite operators which define
them strongly depend on the helicity parameter, the resulting two-loop contributions to the critical dimensions
of the structure functions are independent of helicity. Details of calculations are shown.
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I. INTRODUCTION

During the last decade much attention has been paid to the
inertial range of fully developed turbulence, which contains
wave numbers larger than those that pump the energy into
the system and smaller than those that are related to the
dissipation processes �1,2�. Grounding for the inertial range
turbulence was created in the well-known Kolmogorov-
Obukhov �KO� phenomenological theory �see, e.g., Refs.
�1,3,4��. One of the main problems in the modern theory of
fully developed turbulence is to verify the validity of the
basic principles of KO theory and their consequences within
the framework of a microscopic model. Recent experimental
and theoretical studies indicate possible deviations from the
celebrated Kolmogorov scaling exponents. The scaling be-
havior of velocity fluctuations with exponents whose values
are different from the Kolmogorov ones is called anomalous
and usually is associated with the intermittency phenom-
enon. In turbulence this phenomenon is believed to be re-
lated to strong fluctuations of the energy flux which therefore
leads to the deviations from the predictions of the aforemen-
tioned KO theory. Such deviations, referred to as anomalous
or nondimensional scaling, manifest themselves in a singular
dependence of the correlation or structure functions on the
distances and the integral �external� turbulence scale L. The
corresponding exponents are certain nontrivial and nonlinear
functions of the order of the correlation function, the phe-
nomenon referred to as “multiscaling.” Even though great
progress in the understanding of intermittency and anoma-
lous scaling in turbulence was achieved as a result of inten-
sive studies, their investigation in fully developed turbulence
still remains a major theoretical problem.

Although the theoretical description of fluid turbulence on
the basis of first principles, i.e., on the stochastic Navier-
Stokes equation �1�, remains essentially an open problem,
considerable progress has been achieved in understanding
simplified model systems that share some important proper-
ties with the real problem: shell models �5�, the stochastic
Burgers equation �6�, and passive advection by random “syn-
thetic” velocity fields �7�.

A crucial role in these studies is played by models of the
advected passive scalar field �8�. A simple model of a passive
scalar quantity advected by a random Gaussian velocity field,
white in time and self-similar in space �the latter property
mimics some features of a real turbulent velocity ensemble�,
the so-called Kraichnan rapid-change model �9�, is an ex-
ample. The interest in these models is based on two impor-
tant facts: first, as shown by both natural and numerical ex-
perimental investigations, the deviations from the predictions
of the classical Kolmogorov-Obukhov phenomenological
theory �1,3,4,10� are even more strongly displayed for a pas-
sively advected scalar field than for the velocity field itself
�see, e.g., Refs. �11–16� and references cited therein�, and
second, the problem of passive advection is much easier to
consider from a theoretical point of view. In these studies the
anomalous scaling was established on the basis of a micro-
scopic model �17�, and corresponding anomalous exponents
were calculated within controlled approximations �18–20�
�see also the review �7� and references therein�.

The greatest stimulation to study the simple models of
passive advection not only of scalar fields but also of vector
fields �e.g., a weak magnetic field� is related to the fact that
even simplified models with given Gaussian statistics of a
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so-called synthetic velocity field describes a lot of features of
the anomalous behavior of genuine turbulent transport of
some quantities �such as heat or mass� observed in experi-
ments �see, e.g., Refs. �9,13–23� and references cited
therein�.

An effective method for investigation of a self-similar
scaling behavior is the renormalization group �RG� technique
�24–26�. It was widely used in the theory of critical phenom-
ena to explain the origin of the critical scaling and also to
calculate corresponding universal quantities �e.g., critical di-
mensions�. This method can also be directly used in the
theory of turbulence �25,27–30�, as well as in related models
like the simpler stochastic problem of a passive scalar ad-
vected by a prescribed stochastic flow. In what follows we
use the conventional �“quantum field theory” or field theo-
retic� RG which is based on the standard renormalization
procedure, i.e., on elimination of the ultraviolet �uv� diver-
gences.

In Refs. �31� the field theoretic RG and operator-product
expansion �OPE� were used in the systematic investigation
of the rapid-change model. It was shown that within the field
theoretic approach the anomalous scaling is related to the
very existence of so-called dangerous composite operators
with negative critical dimensions in the OPE �see, e.g., Refs.
�25,30� for details�. In subsequent papers �32� the anomalous
exponents of the model were calculated within the � expan-
sion to order �3 �three-loop approximation�. Here � is a pa-
rameter that describes a given equal-time pair correlation
function of the velocity field �see later section�. Important
advantages of the RG approach are its universality and cal-
culational efficiency: a regular systematic perturbation ex-
pansion for the anomalous exponents was constructed, simi-
lar to the well-known � expansion in the theory of phase
transitions.

Afterward, various generalized descendants of the Kraich-
nan model, namely, models with inclusion of large- and
small-scale anisotropy �33�, compressibility �34�, and finite
correlation time of the velocity field �35,36� were studied by
the field theoretic approach. Moreover, advection of a pas-
sive vector field by the Gaussian self-similar velocity field
�with and without large- and small-scale anisotropy, pres-
sure, compressibility, and finite correlation time� has also
been investigated and all possible asymptotic scaling regimes
and crossovers among them have been classified �37�. The
general conclusion is that the anomalous scaling, which is
the most important feature of the Kraichnan rapid-change
model, remains valid for all generalized models.

Let us describe briefly the solution of the problem in the
framework of the field theoretic approach �see, e.g., Refs.
�25,29,30� for more details�. It can be divided into two main
stages. In the first stage the multiplicative renormalizability
of the corresponding field theoretic model is demonstrated
and the differential RG equations for its correlation functions
are obtained. The asymptotic behavior of the latter on their
ultraviolet argument �r /�� for r�� and any fixed �r /L� is
given by infrared stable fixed points of those equations. Here
� and L are the inner �ultraviolet� and the outer �infrared�
scales. The behavior involves some “scaling functions” of
the infrared argument �r /L�, whose form is not determined
by the RG equations. In the second stage, their behavior at

r�L is found from the OPE within the framework of the
general solution of the RG equations. There, the crucial role
is played by the critical dimensions of various composite
operators, which give rise to an infinite family of indepen-
dent scaling exponents as mentioned above �and hence to
multiscaling�. Of course, both these stages �and thus the phe-
nomenon of multiscaling� have long been known in the RG
theory of critical behavior. The distinguishing feature spe-
cific to models of turbulence is the existence of composite
operators with the aforementioned negative critical dimen-
sions. Their contributions to the OPE diverge at �r /L�→0. In
models of critical phenomena, nontrivial composite operators
always have strictly positive dimensions, so that they only
determine corrections �vanishing for �r /L�→0� to the lead-
ing terms �finite for �r /L�→0� in the scaling functions.

In Ref. �35� the problem of a passive scalar advected by a
Gaussian self-similar velocity field with finite correlation
time �38� was studied by the field theoretic RG method.
There, a systematic study of the possible scaling regimes and
anomalous behavior was presented at one-loop level. The
two-loop corrections to the anomalous exponents were ob-
tained in Ref. �39�. It was shown that the anomalous expo-
nents are nonuniversal as a result of their dependence on a
dimensionless parameter, the ratio of the velocity correlation
time and the turnover time of the scalar field.

In what follows, we shall continue with the investigation
of this model from the point of view of the influence of
helicity �spatial parity violation� on the scaling regimes and
anomalous exponents within the two-loop approximation.

Helicity is defined as the scalar product of velocity and
vorticity and its nonzero value expresses mirror symmetry
breaking of the turbulent flow. It plays a significant role in
the processes of magnetic field generation in an electrically
conductive fluid �40–46� and represents one of the most im-
portant characteristics of large-scale motions as well
�47–50�. The presence of helicity is observed in various natu-
ral �like large air vortices in the atmosphere� and technical
flows �48,51,52�. Despite this fact the role of the helicity in
hydrodynamical turbulence is not completely clarified up to
now.

The Navier-Stokes equations conserve kinetic energy and
helicity in the inviscid limit. The presence of two quadratic
invariants leads to the possibility of appearance of double
cascade. This means that cascades of energy and helicity take
place in different ranges of wave numbers analogously to the
two-dimensional turbulence and/or the helicity cascade ap-
pearing concurrently to the energy cascade in the direction of
small scales �53,54�. In particular, the helicity cascade is
closely connected with the existence of the exact relation
between triple and double correlations of velocity known as
the 2/15 law analogously to the 4/5 Kolmogorov law �55�.
Corresponding to Ref. �53�, the aforementioned scenarios of
turbulent cascades differ from each other by spectral scaling.
Theoretical arguments given by Kraichnan �56� and results
of numerical calculations of the Navier-Stokes equations
�57–59� support the scenario of concurrent cascades. The
appearance of helicity in turbulent systems leads to the con-
straint of the nonlinear cascade to small scales. This phenom-
enon was first demonstrated by Kraichnan �56� within the
modeling problem of statistically equilibrium spectra and
later in numerical experiments.
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Turbulent viscosity and diffusivity, which characterize the
influence of small-scale motions on heat and momentum
transport, are basic quantities investigated in the theoretic
and applied models. The constraint of the direct energy cas-
cade in helical turbulence has to be accompanied by a de-
crease of turbulent viscosity. However, no influence of helic-
ity on turbulent viscosity was found in some works �60,61�.
A similar situation is observed for the turbulent diffusivity in
helical turbulence. Although the modeling calculations dem-
onstrate intensification of turbulent transfer in the presence
of helicity �62,63� direct calculation of the diffusivity does
not confirm this effect �62,64,65�. Helicity is a pseudoscalar
quantity, hence, it can be easily understood that its influence
appears only in quadratic and higher terms of perturbation
theory or in combination with other pseudoscalar quantities
�e.g., large-scale helicity�. Really, simultaneous consider-
ation of memory effects and second-order approximation in-
dicates the effective influence of helicity on turbulent viscos-
ity �66,67� and turbulent diffusivity �63,68–70� already in the
limits of small and infinite correlation time.

Helicity, as we shall see below, does not affect known
results in the one-loop approximation and, therefore, it is
necessary to turn to the second-order �two-loop� approxima-
tion to be able to analyze possible consequences. It is also
important to say that in the framework of the classical Kra-
ichnan model, i.e., a model of passive advection by a Gauss-
ian velocity field with �-like correlations in time, it is not
possible to study the influence of the helicity because all
potentially helical diagrams are identically equal to zero at
all orders in the perturbation theory. In this sense, the inves-
tigation of the helicity in the present model can be consid-
ered as the first step toward analyzing the helicity in genuine
turbulence. In fact, it is interesting and important to study the
helicity effects because many turbulence phenomena are di-
rectly influenced by them �like large air vortices in the atmo-
sphere�. For example, in stochastic magnetic hydrodynamics,
which studies the turbulence in electrically conducting fluids,
it leads to the nontrivial fact of the existence of a so-called
turbulent dynamo—the generation of a large-scale magnetic
field by the energy of the turbulent motion �40–46�. This is
an important effect in astrophysics.

The main result of the paper will be the conclusion that
helicity does not change the anomalous exponents of the
single-time structure functions within the two-loop approxi-
mation although the separate composite operators which de-
fine them strongly depend on the helicity parameter. This
result leads to the following interesting but nontrivial ques-
tion; is this result related only to the two-loop calculations or
does it hold for all orders of perturbation theory? Of course,
the answer to this question definitely lies at least within the
three-loop approximation. On the other hand, as will be
shown, the effective diffusivity rather strongly depends on
the helicity parameter.

The paper is organized as follows. In Sec. II we present
the definition of the model and introduce the helicity to the
transverse projector of a given pair correlation function of
the velocity field. In Sec. III we give the field theoretic for-
mulation of the original stochastic problem and discuss the
corresponding diagrammatic technique. In Sec. IV we ana-
lyze the ultraviolet divergences of the model, establish its

multiplicative renormalizability, and calculate the renormal-
ization constants in the two-loop approximation. In Sec. V
we analyze possible scaling regimes of the model, associated
with nontrivial and physically acceptable fixed points of the
corresponding RG equations. There are five such regimes,
any one of which can be realized in dependence on the val-
ues of the parameters of the model. We discuss the physical
meaning of these regimes �e.g., some of them correspond to
zero, finite, or infinite correlation time of the advecting field�
and their regions of stability in the space of the model pa-
rameters. In Sec. VI the two-loop corrections to the effective
diffusivity are calculated. In Sec. VII the renormalization of
needed composite operators is done and their explicit depen-
dence on the helicity parameter is shown. In Sec. VIII dis-
cussion of the results is present.

II. THE MODEL

In what follows, we shall consider the advection of a pas-
sive scalar field ����x����t ,x� which is described by the
following stochastic equation:

�t� + vi�i� = 	0
� + f�, �1�

where �t�� /�t, �i�� /�xi, 	0 is the coefficient of molecular
diffusivity �hereafter all parameters with a subscript 0 denote
bare parameters of the unrenormalized theory; see below�,

��2 is the Laplace operator, vi�vi�x� is the ith component
of the divergence-free �owing to the incompressibility� ve-
locity field v�x�, and f�� f��x� is a Gaussian random noise
with zero mean and correlation function

�f��x�f��x��� = ��t − t��C�r/L̃�, r = x − x�, �2�

where the angular brackets �¯� hereafter denote the average
over the corresponding statistical ensemble. The noise main-
tains the steady state of the system but the concrete form of
the correlator is not essential. The only condition that must

be satisfied by the function C�r / L̃� is that it must decrease

rapidly for r��r�� L̃, where L̃ denotes an integral scale re-
lated to the stirring. In the case when C depends not only on
the modulus of the vector r but also on its direction, it plays
the role of a source of large-scale anisotropy, whereupon the
noise can be replaced by a constant gradient of the scalar
field. Equation �1� then reads �see, e.g., Ref. �35��

�t� + vi�i� = 	0
� − h · v . �3�

Here, ��x� is the fluctuation part of the total scalar field
��x�=��x�+h ·x, and h is a constant vector that determines
the distinguished direction. The direct formulation with a
scalar gradient is even more realistic; see, e.g. Refs.
�13,19,20,35,36�.

In real problems the velocity field v�x� satisfies the sto-
chastic Navier-Stokes equation. In spite of this fact, in what
follows, we shall suppose that the velocity field is driven by
the simple linear stochastic equation �13,35�
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�tvi + Rvi = f i
v, �4�

where R�R�x� is a linear operation to be specified below
and f i

v� f i
v�x� is an external random stirring force with zero

mean and the correlator

�f i
v�x�f j

v�x��� � Dij
f �x;x�� =	 d ddk

�2��d+1 Pij
� �k�D̃f�,k�

�exp�− i�t − t�� + ik · �x − x��� , �5�

where k= �k� is the wave number,  is the frequency, d is the
dimensionality of the x space �of course, when one investi-
gates a system with helicity the dimension of the x space
must be strictly equal to 3; nevertheless, in what follows, we
shall retain the d-dimensionality of all results that are not
related to helicity so that we can also study the d dependence
of the nonhelical case of the model�. The transition to a
helical fluid corresponds to the giving up of conservation of
spatial parity, and technically this is expressed by the fact
that the correlation function is specified in the form of a
mixture of a true tensor and a pseudotensor. In our approach,
it is represented by two parts of the transverse projector

Pij
� = Pij�k� + Hij�k� , �6�

which consists of the nonhelical standard transverse projec-
tor Pij�k�=�ij −kikj /k2, and Hij�k�= i��ijlkl /k, which repre-
sents the presence of helicity in the flow. Here, �ijl is Levi-
Civita’s completely antisymmetric tensor of rank 3 �it is
equal to 1 or −1 according to whether �i , j , l� is an even or
odd permutation of �1,2,3� and zero otherwise�, and the real
parameter of helicity, �, characterizes the amount of helicity.
Due to the requirement of positive definiteness of the corre-
lation function the absolute value of � must be in the interval
���� �0,1� �42,43�. Physically, the nonzero helical part �pro-
portional to �� expresses the existence of nonzero correla-
tions �v · rot v�.

We choose the correlator Df in Eq. �5� to be a � function

in time, which is equivalent to the condition that D̃f is inde-
pendent of frequency �13� �see also Refs. �35,36��. Following
�35,36�, we shall work with

D̃f�,k� = g0	0
3�k2 + m2�2−d/2−�−�/2 �7�

and

R̃�k� = u0	0�k2 + m2�1−�/2, �8�

the wave-number representation of R�x�. Here, the positive
amplitude factors g0 and u0 play the roles of the coupling
constants of the model, the analogs of the coupling constant
�0 in the �0�

4 model of critical behavior �24,25�. In addition,
g0 is a formal small parameter of the ordinary perturbation
theory. The positive exponents � and � ��=O���� are small
RG expansion parameters, the analogs of the parameter �
=4−d in the �0�

4 theory. Thus, we have a kind of double
expansion model in the �-� plane around the origin �=�
=0. An integral scale L=1/m is introduced to provide infra-
red �ir� regularization. In the limit k�m the functions �7� and
�8� take on simple powerlike forms

D̃f�,k� = g0	0
3k4−d−2�−�, R̃�k� = u0	0k2−�, �9�

which will be used in calculations in what follows. The
needed ir regularization will be given by restrictions on the
region of integration.

From Eqs. �4�, �5�, and �9� we receive the statistics of the
velocity field v. It obeys a Gaussian distribution with zero
mean and correlator

�vi�x�v j�x��� � Dij
v �x;x�� =	 d ddk

�2��d+1 Pij
� �k�D̃v�,k�

�exp�− i�t − t�� + ik · �x − x��� , �10�

with

D̃v�,k� =
g0	0

3k4−d−2�−�

�i + u0	0k2−���− i + u0	0k2−��
. �11�

The correlator �11� is directly related to the energy spectrum
via the frequency integral �21,22,35�

E�k� 
 kd−1	 d D̃v�,k� 

g0	0

2

u0
k1−2�. �12�

Therefore, the coupling constant g0 and the exponent � de-
scribe the equal-time velocity correlator or, equivalently, the
energy spectrum. On the other hand, the constant u0 and the
second exponent � are related to the frequency 


u0	0k2−� �or to the function R̃�k�, the reciprocal of the
correlation time at the wave number k� which characterizes
the mode k �21,22,35,71,72�. Thus, in our notation, the value
�=4/3 corresponds to the well-known Kolmogorov five-
thirds law for the spatial statistics of velocity field, and �
=4/3 corresponds to the Kolmogorov frequency. Simple di-
mensional analysis shows that the parameters �charges� g0
and u0 are related to the characteristic ultraviolet momentum
scale � �of the order of the inverse Kolmogorov length� by

g0 
 �2�+�, u0 
 ��. �13�

In Ref. �13� it was shown that the linear model �4� �and
therefore also the Gaussian model �10� and �11�� is not Gal-
ilean invariant and, as a consequence, it does not take into
account the self-advection of turbulent eddies. As a result of
these so-called sweeping effects the different time correla-
tions of the Eulerian velocity are not self-similar and depend
strongly on the integral scale; see, e.g., Ref. �73�. But, on the
other hand, the results presented in Ref. �13� show that the
Gaussian model gives a reasonable description of the passive
advection in the appropriate frame, where the mean velocity
field vanishes. One more argument to justify the model �10�
and �11� is that, in what follows, we shall be interested in the
equal-time, Galilean-invariant quantities �structure func-
tions�, which are not affected by the sweeping, and therefore,
as we expect �see, e.g., Refs. �35,36,39��, their absence in the
Gaussian model �10� and �11� is not essential.

At the end of this section, let us briefly discuss two im-
portant limits of the considered model �10� and �11�. The first
is the so-called rapid-change model limit when u0→� and
g0��g0 /u0

2=const
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D̃v�,k� → g0�	0k−d−2�+�, �14�

and the second is the so-called quenched �time-independent
or frozen� velocity field limit, which is defined by u0→0 and
g0��g0 /u0=const

D̃v�,k� → g0�	0
2����k−d+2−2�, �15�

which is similar to the well-known models of random walks
in a random environment with long-range correlations; see,
e.g., Refs. �74,75�.

III. FIELD THEORETIC FORMULATION
OF THE MODEL

For completeness of our text in this and the next section
we shall present and discuss the principal moments of the
RG theory of the model defined by Eqs. �3�, �10�, and �11�.

We start with the reformulation of the stochastic problem
�3�–�5�, according to the well-known general theorem �see,
e.g., Refs. �24,25��, into the equivalent field theoretic model
of the doubled set of fields ���� ,�� ,v ,v�� with the follow-
ing action functional:

S��� =
1

2
	 dt1ddx1dt2ddx2vi��t1,x1�Dij

f �t1,x1;t2,x2�v j��t2,x2�

+	 dt ddx ���− �t� − vi�i� + 	0
� − h · v�

+	 dt ddx vi��− �t − R�vi, �16�

where Dij
f is defined in Eq. �5�, �� and v� are auxiliary scalar

and vector fields, and summations are implied over the vec-
tor indices.

It is standard that the formulation through the action func-
tional �16� replaces the statistical averages of random quan-
tities in the stochastic problem �3�–�5� with equivalent func-
tional averages with weight exp S���. The generating
functionals of the total Green’s functions G�A� and con-
nected Green’s functions W�A� are then defined by the func-
tional integral

G�A� = eW�A� =	 D� eS���+A�, �17�

where A�x�= �A� ,A�� ,Av ,Av�� represents a set of arbitrary
sources for the set of fields �, D��D� D��Dv Dv� de-
notes the measure of functional integration, and the linear
form A� is defined as

A� =	 dx�A��x���x� + A���x����x� + Ai
v�x�vi�x�

+ Ai
v��x�vi��x�� . �18�

Following the arguments in �35�, we can put Ai
v�=0 in Eq.

�18� and then perform an explicit Gaussian integration over
the auxiliary vector field v� in Eq. �17� as a consequence of
the fact that, in what follows, we shall not be interested in

the Green’s functions involving the field v�. After this inte-
gration one is left with the field theoretic model described by
the functional action

S��� = −
1

2
	 dt1ddx1dt2ddx2vi�t1,x1�

��Dij
v �t1,x1;t2,x2��−1v j�t2,x2�

+	 dt ddx ���− �t� − vi�i� + 	0
� − h · v� ,

�19�

where the four terms in the third line in Eq. �19� represent
the Martin-Siggia-Rose action for the stochastic problem �3�
at fixed velocity field v, and the first two lines describe the
Gaussian averaging over v defined by the correlator Dv in
Eqs. �10� and �11�.

The action �19� is given in a form convenient for a real-
ization of the field theoretic perturbation analysis with the
standard Feynman diagrammatic technique. From the qua-
dratic part of the action one obtains the matrix of bare propa-
gators. The wave-number–frequency representation of, in
what follows, important propagators is as follows: �a� the
bare propagator �����0 defined as

�����0 = �����0
* =

1

− i + 	0k2 �20�

and �b� the bare propagator for the velocity field �vv�0 given
directly by Eq. �11�, namely,

�viv j�0 = Pij
� �k�D̃v�,k� , �21�

where Pij
� �k� is the transverse projector defined in the previ-

ous section by Eq. �6�. Their graphical representation is pre-
sented in Fig. 1.

The triple �interaction� vertex −��v j� j�=��v jVj� is
present in Fig. 2, where the momentum k is flowing into the
vertex via the auxiliary field ��.

IV. UV RENORMALIZATION AND RG ANALYSIS

We start with the analysis of uv divergences, which is
usually based on the analysis of canonical dimensions �see,

FIG. 1. The graphical representation of the propagators of the
model.

FIG. 2. The interaction vertex of the model �wave-number–
frequency representation�.
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e.g., Refs. �24–26��. First of all, the dynamical model �19�,
as well as all models of this type, is a so-called two-scale
model �25,28–30�, i.e., the canonical dimension of some
quantity F is described by two numbers, namely, the momen-
tum dimension dF

k and the frequency dimension dF
. To find

the dimensions of all quantities it is appropriate to use the
standard normalization conditions dk

k=−dx
k=1, d

=−dt
=1,

dk
=dx

=d
k =dt

k=0, and the requirement that each term of the
action functional must be separately dimensionless with re-
spect to the momentum and frequency dimensions. The total
canonical dimension dF is then defined as dF=dF

k +2dF
 �it is

related to the fact that �t�	0�
2 in the free action �19� with

choice of zero canonical dimension for 	0�. In the framework
of the theory of renormalization the total canonical dimen-
sion in dynamical models plays the same role as the momen-
tum dimension does in static models.

The canonical dimensions of the model �19� cannot be
determined directly because it contains fewer terms than
fields and parameters. Thus one is faced with some kind of
uncertainty in calculation of canonical dimensions. This free-
dom is demonstrated by the fact that parameter h= �h� can be
eliminated from the action �see Ref. �35� for details�. When h
is eliminated from the action, which is equivalent to the as-
signing of zero canonical dimension to it, the canonical di-
mensions of the other quantities can be calculated unambigu-
ously. They are present in Table I, where also the canonical
dimensions of the renormalized parameters are shown.

The model is logarithmic at �=�=0 �the coupling con-
stants g0 and u0 are dimensionless�; therefore the uv diver-
gences in the correlation functions have the form of poles in
� ,�, and their linear combinations.

The quantity that plays a central role in the renormaliza-
tion of the model, namely, the role of the formal index of the
uv divergence, is the total canonical dimension of an arbi-
trary one-particle irreducible correlation �Green’s� function
�= �� , ¯ ,��1-ir. It is given as follows:

d� = d�
k + 2d�

 = d + 2 − N�d�, �22�

where N�= �N� ,N�� ,Nv� are the numbers of corresponding
fields entering into the function �, and summation over all
types of fields is implied. It is well known that superficial uv
divergences, whose removal requires counterterms, can be
present only in those Green’s functions � for which the total
canonical index d� is a non-negative integer.

A detailed analysis of divergences in the problem �19�
was done in Ref. �35� �see also Refs. �29,30��; therefore we
shall present here only basic facts and conclusions rather
than to repeat all details. First of all, every one-irreducible
Green’s function with N���N� vanishes. On the other hand,

dimensional analysis based on Table I leads to the conclusion
that for any d, superficial divergences can be present only in
the one-irreducible Green’s functions ����¯�� with only
one field �� �N��=1� and an arbitrary number N� of fields �.
Therefore, in the model under investigation, superficial di-
vergences can be found only in the one-particle irreducible
function �����. To remove them one needs to include into the
action functional a counterterm of the form ��
�. Its inclu-
sion is manifested by the multiplicative renormalization of
the bare parameters g0, u0, and 	0 in the action functional
�19�:

	0 = 	Z	, g0 = g�2�+�Zg, u0 = u��Zu. �23�

Here the dimensionless parameters g ,u, and 	 are the renor-
malized counterparts of the corresponding bare ones, � is the
renormalization mass �a scale setting parameter� in the mini-
mal subtraction �MS� scheme, and Zi=Zi�g ,u� are renormal-
ization constants.

The renormalized action functional has the following
form:

SR��� = −
1

2
	 dt1ddx1dt2ddx2vi�t1,x1�

��Dij
v �t1,x1;t2,x2��−1v j�t2,x2�

+	 dt ddx ���− �t� − vi�i� + 	Z1
� − h · v� ,

�24�

where the correlator Dij
v is written in renormalized param-

eters �in wave-number–frequency representation�

D̃ij
v �,k� =

Pij
� �k�g	3�2�+�k4−d−2�−�

�i + u	��k2−���− i + u	��k2−��
. �25�

By comparison of the renormalized action �24� with defini-
tions of the renormalization constants Zi, i=g ,u ,	 �Eq. �23��
we come to the relations among them:

Z	 = Z1, Zg = Z	
−3, Zu = Z	

−1. �26�

The second and third relations are consequences of the ab-
sence of the renormalization of the term with Dv in the renor-
malized action �24�. Renormalization of the fields, the mass
parameter m, and the vector h is not needed, i.e., Z�=1 for
all fields, Zm=1, and also Zh=1.

In what follows, we shall work with two-loop approxima-
tion to be able to see the effects of helicity. The calculation
of higher-order corrections is more difficult in the models
with turbulent velocity field with finite correlation time than
in the cases with � correlation in time. First of all, one has to
calculate more relevant Feynman diagrams in the same order
of perturbation theory �see below�. A second and more prob-
lematic distinction is related to the fact that the diagrams for
the finite correlated case involve two different dispersion
laws, namely, �k2 for the scalar field and �k2−� for the
velocity field. This leads to complicated expressions for
renormalization constants even in the simplest �one-loop� ap-
proximation �35,36�. But, as was discussed in Refs.
�35,36,39�, this difficulty can be avoided by the calculation

TABLE I. Canonical dimensions of the fields and parameters of
the model under consideration.

F v � �� m ,� ,� 	0 ,	 g0 u0 g ,u ,h

dF
k −1 −1 d+1 1 −2 2�+� � 0

dF
 1 0 0 0 1 0 0 0

dF 1 −1 d+1 1 0 2�+� � 0
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of all renormalization constants in an arbitrary specific
choice of the exponents � and � that guarantees uv finiteness
of the Feynman diagrams. From the point of calculations the
most suitable choice is to put �=0 and leave � arbitrary.

Thus, the knowledge of the renormalization constants for
the special choice �=0 is sufficient to obtain all important
quantities like the � functions, � functions, coordinates of
fixed points, and critical dimensions.

This possibility is not automatic in general. In the model
under consideration it is the consequence of an analysis
which shows that in the MS scheme all the needed anoma-
lous dimensions are independent of the exponents � and � in
the two-loop approximation. But in the three-loop approxi-
mation they can simply appear �39�.

In Ref. �39� the two-loop corrections to the anomalous
exponents of model �19� without helicity were studied. We
shall continue those investigations including the effects of
helicity.

Now we can continue with renormalization of the model.
The relation S�� ,�� ,v ,e0�=SR�� ,�� ,v ,e ,��, where e0 stands
for the complete set of bare parameters and e stands for
the renormalized ones, leads to the relation W�A ,e0�
=WR�A ,e ,�� for the generating functional of connected
Green’s functions. By application of the operator D�����
at fixed e0 on both sides of the last equation one obtains the
basic RG differential equation

DRGWR�A,e,�� = 0, �27�

where DRG represents the operation D̃� written in the renor-
malized variables. Its explicit form is

DRG = D� + �g�g,u��g + �u�g,u��u − �	�g,u�D	, �28�

where we denote Dx�x�x for any variable x and the RG
functions �the � and � functions� are given by well-known
definitions, and in our case, using relations �26� for renor-
malization constants, they have the following form:

�	 � D� ln Z	, �29�

�g � D�g = g�− 2� − � + 3�	� , �30�

�u � D�u = u�− � + �	� . �31�

The renormalization constant Z	 is determined by the re-
quirement that the one-irreducible Green’s function �����1-ir

must be uv finite when it is written in renormalized variables.
In our case it means that they have no singularities in the
limit � ,�→0. The one-irreducible Green’s function �����1-ir

is related to the self-energy operator ���� by the Dyson equa-
tion

�����1−ir = − i + 	0p2 − �����,p� . �32�

Thus Z	 is found from the requirement that the uv diver-
gences are canceled in Eq. �32� after the substitution 	0
=	Z	. This determines Z	 up to an uv-finite contribution,
which is fixed by the choice of the renormalization scheme.
In the MS scheme all the renormalization constants have the
form �1+poles in � ,� and their linear combinations�. The

self-energy operator ���� is represented by the corresponding
one-irreducible diagrams. In contrast to the rapid-change
model, where only the one-loop diagram exists �it is related
to the fact that all higher-loop diagrams contain at least one
closed loop that is built up of only retarded propagators and
thus are automatically equal to zero�, in the case with finite
correlations in time of the velocity field, higher-order correc-
tions are nonzero. In two-loop approximation the self-energy
operator ���� is defined by diagrams that are shown in Fig. 3.

As was already mentioned, in our calculations we can put
�=0. This possibility essentially simplifies the evaluations of
all quantities �35,36,39�. Then the singular parts of the dia-
grams in Fig. 3 have the following analytical form �for cal-
culational details see Appendix A�:

A = −
Sd

�2��d

g	p2

4u�1 + u�
d − 1

d
�

m
�2�1

�
, �33�

B1 =
Sd

2

�2��2d

g2	p2

16u2�1 + u�3

�d − 1�2

d2 �
m
�4�

�
1

�
 1

2�
+ 2F1�1,1;2 + d/2;1/�1 + u�2�

�d + 2��1 + u�2 � , �34�

B2 =
Sd

2

�2��2d

g2	p2

16u2�1 + u�3

�d − 1�
d2 �

m
�4�1

�

� � 2F1�1,1;2 + d/2;1/�1 + u�2�
�d + 2��1 + u�

−
�d − 2���2

2 2F11

2
,
1

2
;1 +

d

2
;

1

�1 + u�2�� . �35�

Expression A is the result of the one-loop diagram, B1 is the
result for the first two-loop diagram �the first diagram in the
second row in Fig. 3�, and B2 is the result for the second
two-loop graph �the second diagram in the second row in
Fig. 3�. Here, Sd=2�d/2 /��d /2� denotes the d-dimensional

sphere, 2F1�a ,b ,c ,z�=1+ ab
c�1z+

a�a+1�b�b+1�

c�c+1��1�2 z2+¯ represents

the corresponding hypergeometric function. In further inves-
tigations the helical term with �2 in B2 has to be taken with
d=3 but for completeness we leave the d dependence in this
part of B2 in Eq. �35�.

Finally, the renormalization constant Z	=Z1 is given as
follows:

FIG. 3. The one- and two-loop diagrams that contribute to the
self-energy operator ����.
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Z	 = 1 −
ḡ

�

d − 1

d

1

4u�1 + u�
−

ḡ2

�2

�d − 1�2

d2

1

32u2�1 + u�3

+
ḡ2

�

�d − 1��d + u�
d2�d + 2�

1

16u2�1 + u�5

�2F11,1;2 +
d

2
;

1

�1 + u�2�
− �2 ḡ2

�

�

144u2�1 + u�3 2F11

2
,
1

2
;
5

2
;

1

�1 + u�2� , �36�

where in the helical part �the last line� we already substitute
d=3 and denote ḡ=gSd / �2��d.

Now using the definition of the anomalous dimension �	
in Eq. �29� one comes to the following expression:

�	 = − 2�ḡA + 2ḡ2B� , �37�

where

A = −
d − 1

d

1

4u�1 + u�
�38�

is the one-loop contribution to the anomalous dimension �	
and the two-loop contribution is

B =
�d − 1��d + u�

16d2�d + 2�u2�1 + u�5 2F11,1;2 +
d

2
;

1

�1 + u�2�
−

��2

144u2�1 + u�3 2F11

2
,
1

2
;
5

2
;

1

�1 + u�2� . �39�

The issues of interest are especially the multiplicatively
renormalizable equal-time two-point quantities G�r� �see,
e.g., Ref. �35��. Examples of such quantities are the equal-
time structure functions

Sn�r� � ����t,x� − ��t,x���n� �40�

in the inertial range, specified by the inequalities l�1/�
�r�L=1/m �l is an internal length�. Here the angular
brackets �¯� mean the functional average over fields �
= �� ,�� ,v� with weight exp SR���. The infrared scaling be-
havior of the function G�r� �for r / l�1 and any fixed r /L�

G�r� 
 	0
dG


l−dG�r/l�−
GR�r/L� �41�

is related to the existence of ir stable fixed points of the RG
equations �see the next section�. In �41� dG

 and dG are cor-
responding canonical dimensions of the function G, R�r /L�
is the so-called scaling function, which cannot be determined
by the RG equation �see, e.g., Ref. �25��, and 
G is the criti-
cal dimension defined as


G = dG
k + 
dG

 + �G
* . �42�

Here �G
* is the fixed point value of the anomalous dimension

�G���� ln ZG, where ZG is the renormalization constant of
the multiplicatively renormalizable quantity G, i.e., G
=ZGGR �36�, and 
=2−�	

* is the critical dimension of the
frequency with �	 which is defined in Eq. �37� �see also the
next section�.

On the other hand, the small-r /L behavior of the scaling
function R�r /L� can be studied using the Wilson OPE �25�. It
shows that, in the limit r /L→0, the function R�r /L� can be
written in the following asymptotic form:

R�r/L� = �
F

CF�r/L��r/L�
F, �43�

where CF are coefficients regular in r /L. In general, summa-
tion is implied over certain renormalized composite opera-
tors F with critical dimensions 
F. In the case under consid-
eration the leading contribution is given by operators F
having the form Fn= ��i� �i��n. In Sec. VII we shall consider
them in detail, where the complete two-loop calculation of
the critical dimensions of the composite operators Fn will be
presented for arbitrary values of n, d, u, and �.

V. FIXED POINTS AND SCALING REGIMES

Possible scaling regimes of a renormalizable model are
directly given by the ir stable fixed points of the correspond-
ing system of RG equations �24,25�. The fixed point of the
RG equations is defined by � functions, namely, by the re-
quirement of their vanishing. In our model, the coordinates
g* ,u* of the fixed points are found from the system of two
equations

�g�g*,u*� = �u�g*,u*� = 0. �44�

The beta functions �g and �u are defined in Eqs. �30� and
�31�. To investigate the ir stability of a fixed point it is
enough to analyze the eigenvalues of the matrix � of first
derivatives:

�ij = ��g/�g ��g/�u

��u/�g ��u/�u
� . �45�

The ir asymptotic behavior is governed by the ir stable fixed
points, i.e., those for which both eigenvalues are positive.

The possible scaling regimes of the model in one-loop
approximation were investigated in Ref. �35�. Our first ques-
tion is how the two-loop approximation changes the picture
of the “phase” diagram of scaling regimes discussed in Ref.
�35�, and the second one is what restrictions on this picture
are given by helicity �in the two-loop approximation�. The
two-loop approximation in the model under our consider-
ation without helicity was studied in Ref. �39� but the ques-
tion of scaling regimes from the two-loop approximation
point of view was not discussed in detail.

First of all, we shall study the rapid-change limit u→�.
In this regime, it is convenient to make a transformation to
new variables, namely, w�1/u and g��g /u2, with the cor-
responding changes in the � functions:

�g� = g��� − 2� + �	� , �46�

�w = w�� − �	� . �47�

In this notation the anomalous dimension �	 obtains the fol-
lowing form:
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�	 = − 2�ḡ�A� + 2ḡ�2B�� , �48�

where again ḡ�=g�Sd / �2��d. The one-loop contribution A�
acquires the form

A� = −
d − 1

d

1

4�1 + w�
�49�

and the two-loop correction B� is

B� =
�d − 1��dw + 1�w2

16d2�d + 2��1 + w�5 2F11,1;2 +
d

2
;

w2

�1 + w�2�
−

��2w

144�1 + w�3 2F11

2
,
1

2
;
5

2
;

w2

�1 + w�2� . �50�

It is evident that in the rapid-change limit w→0 �u→�� the
two-loop contribution B� is equal to zero. This is not surpris-
ing because in the rapid-change model there are no higher-
loop corrections to the self-energy operator �31,32�; thus we
are coming to the one-loop result of Ref. �35� with the
anomalous dimension �	 of the form

�	 = lim
w→0

�d − 1�ḡ�

2d�1 + w�
=

�d − 1�ḡ�

2d
. �51�

In this regime we have two fixed points denoted as FPI and
FPII in Ref. �35�. The first fixed point is trivial, namely,

w* = g*� = 0, FPI, �52�

with �	
*=0, and diagonal matrix � with eigenvalues �diago-

nal elements�

�1 = �, �2 = � − 2� . �53�

The region of stability is shown in Fig. 4. The second point is
defined as

w* = 0, ḡ*� =
2d

d − 1
�2� − ��, FPII, �54�

with �	
*=2�−�. These are exact one-loop expressions as a

result of the nonexistence of the higher-loop corrections �see
the discussion below �50��. That means that they have no
corrections of order O��2� and higher �we work with the
assumption that �
�; therefore it also includes corrections
of the type O��2� and O�����. The corresponding “stability
matrix” is triangular with diagonal elements �eigenvalues�

�1 = 2�� − ��, �2 = 2� − � . �55�

The region of stability of this fixed point is shown in Fig. 4.
Now let us analyze the “frozen regime” with frozen ve-

locity field, which is mathematically obtained from the
model under consideration in the limit u→0. To study this
transition it is appropriate to change the variable g to the new
variable g��g /u �35�. Then the � functions are transformed
to the following:

�g� = g��− 2� + 2�	� , �56�

�u = u�− � + �	� , �57�

where the �u function is not changed, i.e., it is the same as
the initial one �31�. In this notation the anomalous dimension
�	 has the form

�	 = − 2�ḡ�A� + 2ḡ�2B�� , �58�

where, as obvious, ḡ�=g�Sd / �2��d. The one-loop part A� is
now defined as

A� = −
d − 1

d

1

4�1 + u�
�59�

and the two-loop one B� is given by

B� =
�d − 1��d + u�

16d2�d + 2��1 + u�5 2F11,1;2 +
d

2
;

1

�1 + u�2�
−

��2

144�1 + u�3 2F11

2
,
1

2
;
5

2
;

1

�1 + u�2� . �60�

In the limit u→0 the functions A� and B� obtain the follow-
ing forms:

A�0 = −
d − 1

4d
�61�

and

B�0 =

�d − 1� 2F11,1;2 +
d

2
;1�

16d�d + 2�
−

��2
2F11

2
,
1

2
;
5

2
;1�

144
.

�62�

The system of � functions �56� and �57� exhibits two fixed
points, denoted as FPIII and FPIV in Ref. �35�, related to the

FIG. 4. Regions of stability for the fixed points in one-loop
approximation. The regions of stability for fixed points FPI, FPII,
and FPIII are exact, i.e., not influenced by loop corrections. The
fixed point FPIV is shown in one-loop approximation. The d depen-
dence of the FPIV in two-loop approximation is shown in Fig. 5
below.
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corresponding two scaling regimes. One of them is trivial,

u* = g*� = 0, FPIII, �63�

with �	
*=0. The eigenvalues of the corresponding matrix �,

which is diagonal in this case, are

�1 = − 2�, �2 = − � . �64�

Thus, this regime is ir stable only if both parameters � and �
are negative simultaneously as can be seen in Fig. 4. The
second, nontrivial, point is

u* = 0, ḡ*� = −
�

2A�0

−
B�0

2A�2
0

�2, FPIV, �65�

where A�0 and B�0 are defined in Eqs. �61� and �62�, respec-
tively.

First, let us study the influence of the two-loop approxi-
mation on this ir scaling regime without helicity in the gen-
eral d-dimensional case. We denote the corresponding fixed
point as FPIV0, and its coordinates are

u* = 0, ḡ*� =
2d

d − 1
� +

1

d − 1
�2�, FPIV0, �66�

with anomalous dimension �	 defined as

�	
* =

d − 1

2d
ḡ*� −

ḡ*�
2

2d
� = � , �67�

which is the exact one-loop result �35�. The eigenvalues of
the matrix � �taken at the fixed point� are

�1 = 2� +
1

1 − d
�2�, �2 = � − � . �68�

The eigenvalue �2= ��u�u�*=−�+�	
* is also an exact one-

loop result. The conditions ḡ*��0, �1�0, and �2�0 for the
ir-stable fixed point lead to the following restrictions on the
values of the parameters � and �:

� � 0, � � �, � � d − 1. �69�

The region of stability is shown in Fig. 5. The region of
stability of this ir fixed point increases when the dimension
of the coordinate space d increases.

Now turn to the system with helicity. In this case the
dimension of the space is fixed for d=3. Thus, our starting
conditions for a stable ir fixed point of this type are obtained
from the conditions �69� with the explicit value d=3: ��0,
���, ��2. But they are valid only if the helicity is vanish-
ing and could be changed when nonzero helicity is present.
Let us study this case. When helicity is present the fixed
point FPIV is given as

u* = 0, ḡ*� = 3� +
3

2
1 −

3�2�2

16
��2. �70�

Therefore, in the helical case, the situation is a little bit more
complicated as a result of the competition between nonheli-
cal and helical terms within two-loop corrections. The matrix
� is triangular with diagonal elements �taken already at the
fixed point�

�1 = 2� + − 1 +
3�2�2

16
��2, �71�

�2 = � − � , �72�

where explicit dependence of the eigenvalue �1 on the pa-
rameter � occurs. The requirement to have positive values
for the parameter ḡ*�, and at the same time for the eigenval-
ues �1 ,�2 leads to the region of the stable fixed point. The
results are shown in Fig. 6. The picture is rather complicated
due to the very existence of the critical absolute value of �

FIG. 5. Regions of stability for the fixed point FPIV in the
two-loop approximation without helicity for different space dimen-
sions d. The ir fixed point is stable in the region given by the
inequalities ��0, ���, and ��d−1.

FIG. 6. Regions of the stability for the fixed point FPIV in
two-loop approximation with helicity. The ir fixed point is stable in
the region given by the inequalities ��0, ���, and ����.
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�c =
4

�3�
, �73�

which is defined from the condition of vanishing of the two-
loop corrections in Eqs. �70� and �71�:

− 1 +
3�2�2

16
� = 0. �74�

As was already discussed above, when helicity is not present,
the system exhibits this type of fixed point �and, of course,
the corresponding scaling behavior� in the region restricted
by the inequalities ��0, ���, and ��2. The last condition
changes when the helicity is switched on. The important fea-
ture here is that the two-loop contributions to ḡ*� and �1 have
the same structure but opposite sign. This leads to different
sources of conditions in the cases when �����c and �����c,
respectively. In the situation with �����c the positiveness of
�1 plays a crucial role and one has the following region of
stability of the ir-fixed point FPIV:

� � 0, � � �, � �
32

16 − 3�2�2 . �75�

On the other hand, in the case with �����c, the principal
restriction on the ir-stable regime is yielded by the condition
ḡ*��0 with a final ir-stable region defined as

� � 0, � � �, � �
32

− 16 + 3�2�2 . �76�

Therefore, if we continuously increase the absolute value of
the helicity parameter �, the region of stability of the fixed
point defined by the last inequality in Eq. �75� increases too.
This restriction vanishes completely when ��� reaches the
critical value �c, and the picture becomes the same as in the
one-loop approximation �35�. In this rather specific situation
the two-loop influence on the region of stability of the fixed
point is exactly zero: the helical and nonhelical two-loop
contributions are canceled by each other. Then if the absolute
value of the parameter � increases further, the last condition
appears again, namely, the third condition in Eq. �76�, and
the restriction becomes stronger when ��� tends to its maxi-
mal value, ���=1. In this case of the maximal breaking of
mirror symmetry �maximal helicity�, ���=1, the region of the
ir stability of the fixed point is defined by the inequalities
��0, �=�, and ��2.351 �see Fig. 6�. It is interesting that
the presence of helicity in the system leads to the enlarge-
ment of the stability region.

Now let us turn to the most interesting scaling regime
with a finite value of the fixed point for the variable u. But
by a short analysis one immediately concludes that the sys-
tem of equations �see also Ref. �35��

�g = g�− 2� − � + 3�	� = 0, �77�

�u = u�− � + �	� = 0 �78�

can be satisfied simultaneously for finite values of g ,u only
in the case when the parameter � is equal to �: �=�. In this
case, the function �g is proportional to the function �u. As a
result we have not one fixed point of this type but a curve of

fixed points in the g-u plane. The value of the fixed point for
the variable g in the two-loop approximation is given as
follows �we denote it as in Ref. �35� as FPV�:

ḡ* = −
1

2A*
� −

1

2

B*

A*
3�

2, FPV, �79�

with the exact one-loop result for �	
*=�=� �this is already

directly given by Eq. �78��. Here A* and B* are expressions
A and B from Eqs. �38� and �39� which are taken at the fixed
point value u* of the variable u. The possible values of the
fixed point for the variable u can be restricted �and will be
restricted� as we shall discuss below. The stability matrix �
has the following eigenvalues:

�1 = 0, �2 = 3ḡ* ��	
�g

�
*

+ u* ��	
�u

�
*
. �80�

The vanishing of �1 is an exact result which is related to the
degeneracy of the system of Eqs. �77� and �78� when non-
zero solutions with respect to g and u are assumed, or,
equivalently, it reflects the existence of a marginal direction
in the g-u plane along the line of fixed points.

We start the analysis of the last fixed point with the in-
vestigation of the influence of the two-loop correction on the
corresponding scaling regime when helicity is not present in
the system ��=0�. In this situation it is interesting to deter-
mine the dependence of the scaling regime on dimension d.
The coordinates of the possible fixed points are

ḡ* =
2du*�1 + u*�

d − 1
�

+
2du*�d + u*� 2F1�1,1;2 + d/2;1/�1 + u*�2�

�d − 1�2�d + 2��1 + u*�2 �2,

�81�

where u* is arbitrary for now. To have a positive value of the
fixed point for variables g and u one finds a restriction on the
parameter �: ��0. Possible restrictions on the ir fixed point
value of the variable u can be found from the condition �2
�0. The explicit form of �2 is

�2 =
2 + u*

1 + u*
� +

�2

�d − 1��d + 2��d + 4��1 + u*�6

���1 + u*�2�4 + d��2d�u* − 1� + �u* − 3�u*�

�2F11,1;2 +
d

2
;

1

�1 + u*�2�
+ 4u*�d + u*� 2F12,2;3 +

d

2
;

1

�1 + u*�2�� . �82�

In Fig. 7, the regions of stability for the fixed point FPV
without helicity in the �-u plane for different space dimen-
sions d are shown. It is interesting that in the two-loop case
a nontrivial d dependence of ir stability appears, in contrast
to the one-loop approximation �35�.

Now let us turn to the situation with helicity and investi-
gate its influence on the stability of the ir fixed point. In this
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case we work in three-dimensional space; thus the coordi-
nates of the fixed point are defined by the following equa-
tion:

ḡ* = 3u*�1 + u*�� +
3u*�

2

20�1 + u*�2

��2�3 + u*� 2F11,1;
7

2
;

1

�1 + u*�2�
− 5��1 + u*�2�2

2F11

2
,
1

2
;
5

2
;

1

�1 + u*�2�� . �83�

The competition between helical and nonhelical terms ap-
pears again, which will lead to a nontrivial restriction for the
fixed point values of the variable u to have positive fixed
values for variable g. Next, the eigenvalue �2 of the matrix
� is now

�2 =
2 + u*

1 + u*
� +

�2

140�1 + u*�6

��8u�3 + u� 2F12,2;
9

2
;

1

�1 + u*�2�
+ 14�1 + u*�2�u*�3 + u*� − 6�

�2F11,1;
7

2
;

1

�1 + u*�2� + 7��2�1 + u*�2

��10�1 + u*�21

2
,
1

2
;
5

2
;

1

�1 + u*�2�
− u*3

2
,
3

2
;
7

2
;

1

�1 + u*�2��� �84�

with a nontrivial helical part that plays an important role in
determination of the region of ir stability of the fixed point.

It cannot be seen immediately from Eqs. �83� and �84� but
numerical analysis shows that again an important role is
played by �c=4/ ��3��. First let us study the case when ���
��c. The corresponding region of stable ir fixed points with
g*�0 is shown in Fig. 8. In the case when helicity is not
present ��=0, see the corresponding curve in Fig. 8�, the
only restriction is given by the condition that �2�0; on the
other hand, the condition g*�0 is satisfied without restric-
tion on the parameter space. When arbitrarily small helicity
is present, i.e., ��0, a restriction related to positiveness of
g* arises and is stronger when ��� is increasing �the right
curve for the concrete value of � in Fig. 8� and comes to play
the dominant role. At the same time, with increasing of ���
the importance of the positiveness of the eigenvalue �2 de-
creases �the left curve for the concrete value of � in Fig. 8�.
For a given �����c there exists an interval of values of the
variable u* for which there is no restriction on the value of
the parameter �. For example, for ���=0.1, it is 1.128�u*
�13.502, for ���=0.5, 0.217�u*�0.394, and for ���=0.7,
0.019�u*�0.029. Now turn to the case �����c. When ���
acquires its critical value �c, the ir fixed point is stable for all
values of u*�0 and ��0, i.e., the condition �2�0 becomes
satisfied without restrictions on the parameter space. On the

other hand, the condition g*�0 yields a strong enough re-
striction and it becomes stronger when ��� tends to its maxi-
mal value ���=1 as it can be seen in Fig. 9�.

The most important conclusion of our two-loop investiga-
tion of the model is the fact that the possible restrictions on
the regions of stability of ir fixed points are “pressed” to the
region with rather large values of �, namely, ��2, and do
not disturb the regions with relatively small �. For example,
the Kolmogorov point ��=�=4/3� is not influenced.

As was already discussed �see the previous section� if F
denotes some multiplicatively renormalized quantity �a pa-
rameter, a field, or a composite operator� then its critical
dimension is given by the expression

FIG. 7. Regions of stability for the fixed point FPV in the two-
loop approximation without helicity. d dependence of the stability is
shown.

FIG. 8. Regions of stability for the fixed point FPV in the two-
loop approximation with helicity in the situation when ���c

=4/ �31/2��.
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�F� � 
F = dF
k + 
dF

 + �F
*; �85�

see, e.g., Refs. �25,29,30� for detail. In Eq. �85� dF
k and dF

 are
the canonical dimensions of F, 
=2−�	

* is the critical di-
mension of frequency, and �F

* is the value of the anomalous

dimension �F�D̃� ln ZF at the corresponding fixed point.
Because the anomalous dimension �	 is already exact for all
fixed points at one-loop level, the critical dimensions of fre-
quency  and of fields ���v ,� ,��� are also found exactly
at one-loop level approximation �35�. In our notation they
read


 = �2 − 2� + � for FPII,

2 − � for FPIV,

2 − � = 2 − � for FPV,
� �86�

and


v = 1 − �	
*, 
� = − 1, 
�� = d + 1. �87�

Now let us consider some equal-time two-point quantity
F�r� that depends on a single distance parameter r which is
multiplicatively renormalizable �F=ZFFR, where ZF is the
corresponding renormalization constant�. Then the renormal-
ized function FR must satisfy the RG equation of the form

�DRG + �F�F�r� = 0, �88�

with operator DRG given explicitly in Eq. �28� and usually

�F�D̃� ln ZF. The difference between the functions F and
FR is only in the normalization, choice of parameters �bare or
renormalized�, and related to this choice the form of the per-
turbation theory �in g0 or in g�. The existence of a nontrivial
ir stable fixed point means that in the ir asymptotic region
r / l�1 and any fixed r /L the function F�r� takes on the
self-similar form

F�r� 
 	0
dF


l−dF�r/l�−
Ff�r/L� , �89�

where the values of the critical dimensions correspond to the
given fixed point �see above in this section and Table I�, and
f is some scaling function whose explicit form is not deter-
mined by the RG equation itself. The dependence of the
scaling functions on the argument r /L in the region r /L�1
can be studied using the well-known Wilson operator prod-
uct expansion �also known as the short-distance expansion�
�24,25,29,30�. The OPE analysis will be studied in Sec. VII.

VI. EFFECTIVE DIFFUSIVITY

One of the interesting objects from the theoretical as well
as experimental point of view is the so-called effective dif-
fusivity 	̄. In this section let us briefly investigate the effec-
tive diffusivity 	̄, which replaces the initial molecular diffu-
sivity 	0 in Eq. �1� due to the interaction of a scalar field �
with the random velocity field v. The molecular diffusivity
	0 governs exponential damping in time of all fluctuations in
the system in the lowest approximation, which is given by
the propagator �response function�

G�t − t�,k� = ���t,k����t�,k��0 = ��t − t��exp�− 	0k2�t − t��� .

�90�

Analogously, the effective diffusivity 	̄ governs exponential
damping of all fluctuations described by the full response
function, which is defined by the Dyson equation �32�. Its
explicit expression can be obtained by the RG approach. In
accordance with general rules of the RG �see, e.g., Ref. �25��
all principal parameters of the model g0, u0, and 	0 are re-
placed by their effective �running� counterparts, which sat-
isfy the Gell-Mann-Low RG equations

s
dḡ

ds
= �g�ḡ, ū�, s

dū

ds
= �u�ḡ, ū� , �91�

s
d	̄

ds
= − 	̄�	�ḡ, ū� , �92�

with initial conditions �ḡ�s=1=g , �ū�s=1=u , �	̄�s=1=	. Here s
=k /�, �, and � functions are defined in Eqs. �29�–�31� and
all running parameters clearly depend on the variable s.
Straightforward integration �at least numerical� of Eqs. �91�
gives a method to find their fixed points. Instead, one very
often solves the set of equations �g�g* ,u*�=�u�g* ,u*�=0
which defines all fixed points g* ,u*. This last approach was
used above when we classified all fixed points. Due to the
special form of the � functions �30� and �31� we are able to
solve Eq. �92� analytically. Using Eqs. �91� and �30� one
immediately rewrites �92� in the form

s
d	̄

	̄
=

�	
2� + � − 3�	

dḡ

ḡ
, �93�

which can be easily integrated. Using initial conditions the
solution acquires the form

FIG. 9. Regions of the stability for the fixed point FPV in two-
loop approximation with helicity in the situation when ���c

=4/ �31/2��.
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	̄ =  g	3

ḡs2�+��1/3

=  D0

ḡk2�+��1/3

, �94�

where to obtain the last expression we used the equations
g�2�+�	3=g0	0

3=D0. We emphasize that the above solution is
exact, i.e., the exponent 2�+� is exact too. However, in the
infrared region k��� l−1, ḡ→g*, which can be calculated
only pertubatively. In the two-loop approximation g*=g*

�1��

+g*
�2��2 and after the Taylor expansion of g*

1/3 in Eq. �94� we
obtain

	̄ � 	* D0

g*
�1��

�1/3

k−�2�+��/3, 	* � 1 −
g*

�2��

3g*
�1� . �95�

Recall that for Kolmogorov values �=�=4/3 the expo-
nent in �95� becomes equal to −4/3. Let us estimate the
contribution of helicity to the effective diffusivity in the non-
trivial point above denoted as FPV �83�. At this point �=�
��2�+�� /3=�� and

	* = 1 −
�

12�1 + u*�� 2�3 + u*�
5�1 + u*�2 2F11,1;

7

2
;

1

�1 + u*�2�
− ��2

2F11

2
,
1

2
;
5

2
;

1

�1 + u*�2�� . �96�

In Figs. 10 and 11 the dependence of the 	* on the helicity
parameter � and the ir fixed point u* of the parameter u is
shown. As one can see from these figures when u*→� �the
rapid-change model limit� the two-loop corrections to 	*=1
vanish. Such behavior is related to the fact, which was al-
ready stressed in the paper, that within the rapid-change
model there are no two- and higher-loop corrections at all.
On the other hand, the largest two-loop corrections to 	* are
given in the frozen-velocity-field limit �u*→0�. It is interest-
ing that for all finite values of the parameter u* there exists a
value of the helicity parameter � for which the two-loop
contributions to 	* are canceled. For example, for the frozen-

velocity-field limit �u*=0� this situation arises when the he-
licity parameter � is equal to its critical value �c=4/ ��3��
�this situation can be seen in Fig. 11�. It is again the result of
the competition between the nonhelical and helical parts of
the two-loop corrections as is shown in Eq. �96�. A further
important feature of the expression �96� is that it is linear in
the parameter �. Thus, when one varies the value of � the
picture is the same as in Figs. 10 and 11 and only the scale of
corrections is changed. In Figs. 10 and 11 we have shown the
situation for the most interesting case when � is equal to its
Kolmogorov value, namely, �=4/3.

VII. OPERATOR-PRODUCT EXPANSION, CRITICAL
DIMENSIONS OF COMPOSITE OPERATORS,

AND ANOMALOUS SCALING

A. Operator-product expansion

Let us now study the behavior of the scaling function in
Eq. �89�. According to the OPE �24,25,29,30�, the equal-time
product F1�x��F2�x�� of two renormalized composite opera-
tors �78� at x= �x�+x�� /2=const and r=x�−x�→0 can be
written in the following form:

F1�x��F2�x�� = �
i

CFi
�r�Fi�x,t� , �97�

where the summation is taken over all possible renormalized
local composite operators Fi allowed by symmetry with defi-
nite critical dimensions 
Fi

, and the functions CFi
are the

corresponding Wilson coefficients regular in L−2. The renor-
malized correlation function �F1�x��F2�x��� can now be
found by averaging Eq. �97� with the weight exp SR with SR

from Eq. �24�. The quantities �Fi� appear on the right-hand
side, and their asymptotic behavior in the limit L−1→0 is
then found from the corresponding RG equations and has the
form �Fi��L−
Fi.

FIG. 10. The dependence of 	* on the helicity parameter � for
definite ir fixed point values u* of the parameter u.

FIG. 11. The dependence of 	* on the ir fixed point u* for
concrete values of the helicity parameter �.
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From the OPE �97� one can find that the scaling function
f�r /L� in the representation �89� for the correlation function
F1�x��F2�x�� has the form

f�r/L� = �
i

AFi
�r/L�
Fi, �98�

where the coefficients AFi
are regular in �r /L�2.

The principal feature of the turbulence models is the ex-
istence of operators with negative critical dimensions �also
known as “dangerous” operators� �25,29–31,34�. Their pres-
ence in the OPE determines the ir behavior of the scaling
functions and leads to their singular dependence on L when
r /L→0. At this point the turbulence models are crucially
different from the models of critical phenomena, where the
leading contribution to the representation �98� is given by the
simplest operator F=1 with the dimension 
F=0, and the
other operators determine only the corrections that vanish for
r /L→0.

If the spectrum of the dimensions 
Fi
for a given scaling

function is bounded from below, the leading term of its be-
havior for r /L→0 is given by the minimal dimension. As
was discussed in Ref. �35�, the model under consideration
belongs to this case for small enough values of the exponents
� ,�.

In what follows, we shall concentrate on the equal-time
structure functions of the scalar field defined as

Sn�r� � ����x,t� − ��x���n�, r = �x − x�� , �99�

which are also interesting from the experimental point of
view. The representation �89� is valid with the dimensions
dF
=0 and dF=
F=n
�=−n. In general, not only do the op-

erators that are present in the corresponding Taylor expan-
sion enter into the OPE but also all possible operators that
admix with them in renormalization. In the present model the
leading contribution of the Taylor expansion for the structure
functions �99� is given by the tensor composite operators
constructed solely of the scalar gradients

F�n,p� � �i1
�¯ �ip

���i��i��l, �100�

where n= p+2l is the total number of fields � entering the
operator and p is the number of free vector indices.

B. Composite operators F†n ,p‡: renormalization
and critical dimensions

As the composite operators �100� play a central role in
what follows, let us briefly discuss their renormalization. A
complete and detailed discussion of the renormalization of
the composite operators is given in Ref. �32�. Therefore, we
shall show only the basic moments necessary to present ex-
plicit expressions for composite operators.

The necessity of additional renormalization of the com-
posite operators �100� is related to the fact that the coinci-
dence of the field arguments in Green’s functions containing
them leads to additional uv divergences. These divergences
must be removed by special kinds of renormalization proce-
dures which can be found, e.g., in Refs. �24–26�, where their
renormalization is studied in general. The renormalization of

composite operators in models of turbulence is discussed in
Refs. �28,30�. Typically, the composite operators are mixed
under renormalization. This means that renormalized opera-
tors �which are uv finite� are linear combinations of unrenor-
malized ones. In our case, the most important fact in renor-
malization of composite operators F�n , p� is that they mix
only with each other during the renormalization procedure;
therefore the corresponding matrix of renormalization con-
stants Z is found from the condition of multiplicative renor-
malization which can be written as follows:

F�n,p� = Z�n,p��n�,p��FR�n�,p�� , �101�

where FR denotes the renormalized counterpart of the com-
posite operator F. It is standard to define the matrix of cor-
responding anomalous dimensions as

��n,p��n�,p�� = Z�n,p��n�,p��
−1 D̃�Z�n�,p���n�,p��. �102�

After the corresponding analysis of diagrams �for details
see, e.g., Ref. �35�� it can be shown that the renormalization
matrix Z�n,p��n�,p�� in Eq. �101� is triangular; therefore, the
matrix of anomalous dimensions �102� is also triangular.
Thus, the anomalous dimensions �the eigenvalues of the ma-
trix �102�� is directly determined by the diagonal elements of
the matrix �101�, namely,

��n,p� = D̃�Z�n,p��n,p�. �103�

Our following aim is the calculation of the diagonal ele-
ments Z�n,p��n,p� of the renormalization constants matrix
Z�n,p��n�,p��. If we denote the generating functional of the one-
irreducible Green’s functions with one composite operator
F�n , p� �given in Eq. �100�� and any number of fields � as
��x ;�� then we are interested in part of it, namely, the �n

term of the expansion of ��x ;�� in �, which will be denoted
as �n,p�x ;��. Its analytical form is the following:

�n,p�x;�� =
1

n!
	 dx1 ¯	 dxn��x1� ¯ ��xn�

��F�n,p��x���x1� ¯ ��xn��1−ir

�
1

n!
	 dx1 ¯	 dxn��x1� ¯ ��xn�

� �n,p�x;x1, . . . ,xn� , �104�

where ��x� is the functional argument, the “classical coun-
terpart” of the random field �. In the zeroth approximation
the functional �104� coincides with F�n , p� and in higher
orders the kernel �n,p�x ;x1 , . . . ,xn� is given by the sum of
diagrams shown in Fig. 12 �up to two loops�. The analysis of
the diagrams in Fig. 12 shows that for each diagram and for
any argument xi, the corresponding spatial derivative can be
isolated as an external factor. Therefore, using integration by
parts, it is appropriate to move them onto the corresponding
fields ��xi� in Eq. �104�. As a result the functional �104� takes
the form
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�n,p�x;�� =
1

n!
	 dx1 ¯	 dxnai1

�x1� ¯ ain
�xn�

� �n,p�i1. . .in�x;x1, . . . ,xn� , �105�

where we define new vector fields ai�x�=�i��x�.
The black circles on the top of the diagrams in Fig. 12

represents the vertex of the composite operator F�n , p�. Ana-
lytically it corresponds to the following expression:

Vk�x;x1, . . . ,xk� =
�kF�n,p�

���x1� ¯ ���xk�
, �106�

where k denotes the number of attached lines. It is possible
to represent it in the following convenient form �see Ref.
�32��:

V�x;x1, . . . ,xk� = �
j=1

k

�ij
��x − xj�

�kF�n,p�
�ai1

¯ �aik

, �107�

where ai is replaced by �i��x� after the differentiation.
For example, the one-loop diagram shown in Fig. 12 has

then the following analytical form:

K1 =	 dx1 ¯	 dx4V�x;x1,x2����x1����x3��0

� ���x2����x4��0�vk�x3�vl�x4��0�k��x3��l��x4� ,

�108�

and analogously one can write down all two-loop diagrams
in Fig. 12.

To determine the renormalization constants Z�n,p�
−1 it is

enough to calculate the function �n,p�i1¯in�x ;x1 , . . . ,xn� with
appropriate choice of its arguments ai since the function

�n,p�i1¯in�x ;x1 , . . . ,xn� contains only logarithmic divergences.
A sufficient choice is to replace them by the fixed point x, the
argument of the operator F�n , p�. Thus the expression
ai1

�x�¯ain
�x� in �105� can be taken outside the integration.

As a result we come to the local composite operator
�n,p�x ;��:

�n,p�x;�� =
1

n!
ai1

�x� ¯ ain
�x�

�	 dx1 ¯	 dxn�n,p�i1¯in�x;x1, . . . ,xn� .

�109�

After integration one obtains an expression independent of
coordinates. The vector indices of �n,p�i1¯in are transformed
into combinations of Kronecker � symbols and their contrac-
tions with vector symbols of the product ai1

�x�¯ain
�x� give

the original composite operator F�n , p�. Expression �108�
can then be written, up to an uv-finite part, in the form

K1 = akal
�2

�ai�aj
F�n,p�Xij,kl

K1 , �110�

with

Xij,kl
K1 =	 dx3	 dx4�i���x����x3��0� j���x����x4��0

� �vk�x3�vl�x4��0. �111�

Two-loop diagrams �Fig. 12� can be given in the same form,
namely,

K2z = ak1
ak2

�2F�n,p�
�ai1

�ai2

Xi1i2,k1k2

K2z ,

K2e = ak1
ak2

ak3

�3F�n,p�
�ai1

�ai2
�ai3

Xi1i2i3,k1k2k3

K2e ,

K2f = ak1
ak2

ak3
ak4

�4F�n,p�
�ai1

�ai2
�ai3

�ai4

Xi1i2i3i4,k1k2k3k4

K2f , �112�

where z=a ,b ,c ,d. The analytical expressions for XK2z �z
=a ,b ,c ,d ,e , f� can be easily written in analogy with the
one-loop diagram K1; therefore we shall not give their ex-
plicit form here. The tensors XK2z in Eq. �112� can be decom-
posed into basic structures made of Kronecker � symbols:

Xi1i2,k1k2

K1 = �
j=1

2

Aj
K1Ti1i2,k1k2

�j� , �113�

Xi1i2,k1k2

K2z = �
j=1

2

Aj
K2zTi1i2,k1k2

�j� , �114�

Xi1i2i3,k1k2k3

K2e = �
j=1

2

Aj
K2eTi1i2i3,k1k2k3

�j� , �115�

FIG. 12. The Feynman diagrams for the function �n,p in two-
loop approximation. The Feynman rules are the same as in Sec. III.
The black circle is defined in the text of the present section. The
one-loop diagram we denote as K1, the two-loop diagrams we de-
note as K2a �the first diagram�, K2b �the second diagram�, K2c �the
first diagram in the second row�, K2d �the second diagram in the
second row�, K2e �the first diagram in the third row�, and K2f �the
second diagram in the third row�.
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Xi1i2i3i4,k1k2k3k4

K2f = �
j=1

3

Aj
K2fTi1i2i3i4,k1k2k3k4

�j� , �116�

where z=a ,b ,c ,d, and the tensor structures are defined as

Tij,kl
�1� = �ij�kl,Tij,kl

�2� =
�ik� jl + �il� jk

2
, �117�

Tijk,lmn
�1� =

1

9
��ij��kl�mn + �km�ln + �kn�lm� + �j ↔ k� + �i ↔ k�� ,

�118�

Tijk,lmn
�2� =

1

6
��il�� jm�kn + � jn�km� + �l ↔ m� + �l ↔ n�� ,

�119�

Tijkl,mnop
�1� =

1

9
��ij�kl + �ik� jl + �il� jk�

���mn�op + �mo�np + �mp�on� , �120�

Tijkl,mnop
�2� =

1

72
��ij„�mn��ko�lp + �kp�lo� + �mo��kn�lp + �kp�ln�

+ �mp��kn�lo + �ko�ln� + �no��km�lp + �kp�lm�

+ �np��km�lo + �ko�lm� + �op��km�ln + �kn�lm�…

+ �j ↔ k� + �j ↔ l� + �i ↔ k� + �i ↔ l�

+ �i ↔ k, j ↔ l�� , �121�

Tijkl,mnop
�3� =

1

24
��im„� jn��ko�lp + �kp�lo� + � jo��kn�lp + �kp�ln�

+ � jp��kn�lo + �ko�ln�… + �m ↔ n� + �m ↔ o�

+ �m ↔ o� + �m ↔ p�� , �122�

and the scalar coefficients Aj
x �x=K1 ,K2a , . . . ,K2f� in Eqs.

�113�–�116� are given as

A1
x =

�d + 1�X1
x − 2X2

x

d�d + 2��d − 1�
, �123�

A2
x =

2�− X1
x + dX2

x�
d�d + 2��d − 1�

, �124�

for x=K1 ,K2a ,K2b ,K2c ,K2d. Further, for operator K2e we
have

A1
K2e =

9��d + 1�X1
K2e − 2X2

K2e�
d�d + 2��d + 4��d − 1�

, �125�

A2
K2e =

6�− 3X1
K2e + �d + 2�X2

K2e�
d�d + 2��d + 4��d − 1�

, �126�

and for operator K2f

A1
K2f =

9�d + 3���d + 5�X1
K2f − 8X2

K2f� + 72X3
K2f

�d − 1�d�d + 1��d + 2��d + 4��d + 6�
, �127�

A2
K2f = −

72��d + 3�X1
K2f − �d2 + 3d + 6�X2

K2f + 2�d + 2�X3
K2f�

�d − 1�d�d + 1��d + 2��d + 4��d + 6�
,

�128�

A3
K2f =

24�3X1
K2f + �d + 2��− 6X2

K2f + �d + 4�X3
K2f��

�d − 1�d�d + 1��d + 2��d + 4��d + 6�
,

�129�

where Xj
x, j=1,2 ,3, x=K1 ,K2a , . . . ,K2f, are given in Appen-

dix D �calculations are performed in the MS scheme�. Look-
ing at expressions �D2� and �D16� in Appendix D one can
see the explicit dependence of the diagrams K2a and K2d on
the helicity parameter �. These diagrams are not present in
the case of the rapid change-model at all �u→�; see Ref.
�32�� because they contain closed circuits of retarded propa-
gators �����0 and therefore automatically vanish �for the
same reason the self-energy operator ���� of the rapid-
change model has only one-loop corrections �32��. This is
one of the important reasons to study higher-loop corrections
of models with finite correlation time, namely, some consid-
erable properties cannot be studied within simple rapid-
change models.

Let us briefly concentrate our attention on the comparison
of the rapid-change limit of our two-loop results for compos-
ite operators with those obtained in Ref. �32�. This compari-
son leads to some nontrivial results for the corresponding
integrals. They are presented in Appendix C �expressions
�C4�–�C6��. We found one misprint in Eq. �5.42� of Ref.
�32�, namely, there must be an overall factor d2−1 in the
expression for A1.

The critical dimensions of our operators are defined by
the general formula given in Eq. �85�. When we rewrite it in
the concrete form of the operator Fnp�F�n , p�
=�i1

�¯�ip
���i��i��l then we have


Fnp
= dFnp

k + 
dFnp

 + �Fnp

* . �130�

Now using the canonical dimensions shown in Table I,
namely, d�

k =−1 and d�
=0, one immediately comes to the

result


Fnp
= �Fnp

* . �131�

This means that the critical dimensions of our operators are
equal to the corresponding anomalous dimensions at a corre-
sponding fixed point.

The first step to determine the anomalous dimensions is to
calculate the constants Znp�Z�n,p��n,p� �see Eq. �103�� in the
two-loop approximation. In our case it is given as

Znp = 1 +
g

�
Anp +

g2

�
Bnp +

g2

�2Cnp. �132�

The coefficient Cnp will not contribute to the corresponding
anomalous dimension �this can be verified by direct calcula-
tion�; hence we do not present its explicit form in what fol-
lows. The coefficients Anp and Bnp are defined as
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Anp =
1

2
�k1

�2�A1
K1 + k2

�2�A2
K1� �133�

and

Bnp = k1
�2�1

2
A1

K2a +
1

2
A1

K2a + A1
K2c + A1

K2d�
+ k2

�2�1

2
A2

K2a +
1

2
A2

K2a + A2
K2c + A2

K2d�
+ k1

�3�A1
K2e + k2

�3�A2
K2e, �134�

where Ax
y, x= �1,2�, y= �K1 ,K2z�, z= �a ,b ,c ,d ,e� are defined

in Eqs. �124�–�126� and

k1
�2� = �n − p��d + n + p − 2� , �135�

k2
�2� = n�n − 1� , �136�

k1
�3� = �n − 2��n − p��d + n + p − 2� , �137�

k2
�3� = n�n − 1��n − 2� . �138�

Then the anomalous dimensions have the form

�np � �Fnp
= − 2Anpg − 4Bnpg2. �139�

Thus, the coefficient Anp represents the one-loop contribution
to the anomalous dimension, and the coefficient Bnp the two-
loop one. The critical dimension 
Fnp

�see Eq. �131�� of the
operator Fnp is obtained from �139� when it is taken at the
corresponding fixed point.

C. Anomalous scaling: Two-loop approximation

Our aim is the investigation of the influence of the helicity
on the anomalous scaling in the most interesting situation of
the degenerate fixed point, namely, the fixed point denoted as
FPV in Sec. V. In this case, the dimensions 
Fnp

are repre-
sented in the following series in the only independent expo-
nent �=� �it is obtained from �139� by the substitution of the
corresponding fixed point for g*�


Fnp
= �
Fnp

�1� + �2
Fnp

�2� . �140�

The one-loop contribution has the form


Fnp

�1� =
2n�n − 1� − �n − p��d + n + p − 2��d + 1�

2�d + 2��d − 1�
,

�141�

which is independent of the parameter u �the ratio of the
velocity correlation time and the scalar turnover time�. Al-
though the fixed point value g* given by Eq. �83� and the
coefficient Bnp in Eq. �139� explicitly depend on the helicity
parameter �, the two-loop contribution to the critical dimen-
sion 
Fnp

�2� is independent of �. Thus, the result is the same as
that obtained in Ref. �39� �there is a misprint in the final
explicit result but the correct formula was republished in
Ref. �76��. Its explicit expression is rather large, and as it can

be found elsewhere we shall not repeat it here. At first sight
this result is a surprise but it can be understood in the fol-
lowing, rather simple, way. As we know the structure func-
tions Sn�r� �which are studied here� are functions of the value
of the distance r= �x−x��. Therefore, only those phenomena
will have impact on the critical dimensions that can “change”
the spatial distances. Among such phenomena belong the
compressibility and anisotropy. As for helicity, it breaks the
mirror symmetry but it does not disturb spatial distances.
Therefore, it cannot influence the critical dimensions, i.e., it
cannot change the corresponding asymptotic behavior. Thus,
if our statement is right then we expect that the situation will
be the same in all orders of perturbation expansion, namely,
the quantities such as effective diffusivity will depend on
helicity, but critical dimensions of the structure functions
will not. But, of course, for now it is only a speculation and
the independence of the critical dimensions of helicity is
maybe only the effect of two-loop approximation. To solve
this problem at least three-loop calculations are needed.

On the other hand, to study the helicity effect on the two-
loop level it is enough to avoid the conditions of isotropy or
incompressibility of the system. Thus, the next step is, e.g.,
to include the assumption of compressibility of the system
and investigate the combined effects of the helicity and com-
pressibility on the scaling properties of the model under con-
sideration. We assume that a nontrivial result can be ob-
tained.

As was already mentioned detailed analysis of the two-
loop contribution to the critical dimensions of the structure
functions within the model under our consideration �without
helicity� was done in Ref. �39�. We have recalculated their
results and found some discrepancy in interpretations of our
and their numerical results. That is, as our calculations show,
a hierarchical behavior of the quantity �n��
n0

�2�

−
n0
�2��u=�� /n3 as a function of n for a concrete value of d

�dimension of space� is destroyed in Fig. 1�d� in Ref. �39�.
This figure corresponds to a large enough value of d �namely,
d=10�. Our calculations lead to the same curves as theirs but
they correspond to different values of n which can be seen by
direct comparison of Fig. 1�d� in Ref. �39� and Fig. 13 in the
present paper.

The conclusion is as follows: The hierarchical behavior of
the quantities �n is not present for large enough space dimen-
sions d �the same situation also occurs for other large values
of d as can be shown by direct calculations�.

All the other results are the same as in Ref. �39�; thus we
shall not repeat them here.

VIII. CONCLUSION

In this paper, the influence of helicity on the stability of
asymptotic regimes, on the anomalous scaling, and on the
effective diffusivity was studied in the framework of the pas-
sive scalar advected by the turbulent flow with finite corre-
lations in time of the velocity field. Such investigation is
important and useful for understanding of efficiency of toy
models �like the Kraichnan and related models� to study the
real turbulent motions by means of modern theoretical meth-
ods including renormalization group approach. Thus, it can
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be considered as the first step in investigation of the influ-
ence of helicity in a real turbulent environment.

In the present paper, the RG calculations are performed in
the two-loop approximation, which is necessary to include
the effects of helicity. It was shown that the anomalous scal-
ing of the structure functions, which is typical for the Kra-
ichnan model and its numerous extensions �see the Introduc-
tion�, is not changed by the inclusion of helicity in the
incompressible fluid. This is given mathematically by the
very interesting fact that although separated two-loop Feyn-
man diagrams of the corresponding composite operators
strongly depend on the helicity parameter �, their sum—the
critical dimension 
n—is independent of � in the asymptotic
regime defined by an ir stable fixed point. This very interest-
ing fact can be explained physically by rather simple argu-
ments in the following way �as was discussed in the previous
section maybe it is only the effect of the two-loop approxi-
mation, therefore, to confirm what follows higher-loop cal-
culations are needed�. The single-time structure functions
Sn�r� of the scalar field depend only on the spatial distance
r= �x−x�� but not on the direction. Thus, we suppose that
only this phenomenon will change the critical dimensions of
structure functions which modify spatial relations. It can be,
e.g., the inclusion of compressibility or spatial anisotropy.
On the other hand, helicity breaks the mirror symmetry,
which is not related to distance. As a result, the critical di-
mensions of the structure functions are not affected by the
helicity of the system. We suppose that an analogous situa-
tion will hold for all quantities that depend only on the spa-
tial distance �more precisely, that are constructed from quan-
tities taken at different spatial points�, and in all orders of
perturbation theory. The situation can be different when one
includes in the investigation the effects of helicity together
with another assumption about the turbulent flow, e.g., its

compressibility. We suppose that nontrivial results can be
obtained in this more general case.

On the other hand, the stability of possible asymptotic
regimes, the values of the fixed RG points, and the turbulent
diffusivity strongly depend on the amount of helicity. It is
shown that the presence of helicity in the system leads to
restrictions on the possible values of the parameters of the
model. The most interesting fact is the existence of a critical
value �c of the helicity parameter � which divides the inter-
val of possible absolute values of � into two parts with com-
pletely different behavior. It is related to the existence of a
competition between nonhelical and helical contributions
within the two-loop approximation. As a result of this com-
petition, within the so-called frozen limit, the presence of
helicity enlarges the region of parameter space with a stable
scaling regime, and if ���=�c the corresponding two-loop re-
striction vanishes completely and one comes to the one-loop
results �35�. Similar splitting, although more complicated,
into two nontrivial behaviors of the fixed point was also
obtained in the general case with finite correlations in time of
the velocity field.

Another quantity which rather strongly depends on the
helicity parameter � is the effective diffusivity. It is shown
that the value of effective diffusivity can be 50% larger in the
helical case in comparison with the nonhelical case.
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APPENDIX A

In principle a few ways exist to evaluate the two-loop
diagrams B1 and B2 which are explicitly shown in Fig. 3. We
compare two of them on the example of the Feynman dia-
gram B1. The explicit analytical expression for B1 in the
wave-number–frequency representation is

B1 =
g2	6�4�

�2��2d+2 	 ddk ddq dkdqk4−d−2�q4−d−2�

�k
2 + 	2u2k4��q

2 + 	2u2q4�

�
pi1

�p − k�i3
�p − k − q�i4

�p − k�i2
Pi1i2
� �k�Pi3i4

� �q�

�ik + 	�p − k�2�2�i�k + q� + 	�p − k − q�2�
,

�A1�

where p denotes the external wave number �momentum�, k
and q are two independent internal wave numbers, the exter-
nal frequency p is taken to be zero �we are only interested
in the divergent part of the diagram and it is independent of
p�, k and q are the corresponding internal frequencies, �
is taken to be zero �see discussion in Sec. IV�, Pij

� is the
helical transverse projector defined in Sec. II, and over the

FIG. 13. Behavior of the quantity �n �see text� for n=4, 6, 8, 10,
20, and 50 as a function of u for d=10 in units of 10−3. In Ref. �39�
the curves are interpreted as n=4,6 ,8 ,20 �from bottom to top�. But
in fact they correspond to n=20,4 ,8 ,6 �from bottom to top�. The
curves for n=10,50 are added to demonstrate the situation more
completely.
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internal vector indices ij, j=1,2 ,3 ,4, corresponding summa-
tions are assumed.

After integration over the internal frequencies, which is
rather simple, and then making an expansion in respect of the
external momentum p and leaving only terms of order two in
respect of p �because uv divergences can have only this
structure; see Sec. IV�, and, in the end, after summation over
vector indices one has

B1 =
g2	�4�

�2��2d4u2�1 + u�2 	 ddk ddq k−d−2�q−d−2�

��1 + u��k2 + q2� + 2k · q�

� �p2q2 −
�p · k�2q2

k2 −
p2�k · q�2

k2 +
�p · k�2�k · q�2

k4 � .

�A2�

Now we shall calculate B1 in two different ways.
The first approach to the integral B1 is based on division

of integrations into radial and angle parts which after stan-
dard procedures leads to �for details see, e.g., Ref. �32��

B1 =
g2	�4�p2SdSd−1

�2��2d4u2�1 + u�2

d − 1

d

� 	
m

� dk

k1+2�	
m

� dq

q1+2�	
−1

1

dx
�1 − x2��d−1�/2q2

�1 + u��k2 + q2� + 2kqx
,

�A3�

where x=cos  , and  denotes the angle between vectors k
and q. Sd and Sd−1 are d-dimensional and �d−1�-dimensional
spheres, respectively, which are defined as Sd
=2�d/2 /��d /2�. The needed ir cutoff of the integrations is
represented by m�L−1. It is useful to rewrite the denomina-
tor of the expression under the integration in the form of the
infinite series

1

�1 + u��k2 + q2� + 2kqx
= �

j=1

�
�− 2kqx� j−1

��k2 + q2��1 + u�� j . �A4�

Now we are able to integrate over the angle variable x
=cos  term by the term in the sum, which yields

B1 =
g2	�4�p2SdSd−1

�2��2d8u2�1 + u�2

d − 1

d
�d + 1

2
�

��
j=1

�

��− 1� j−1 + 1�
� j

2
�

�d + j + 1

2
�

�	
m

� dk

k1+2�	
m

� dq

q1+2�

q2�2kq� j−1

��k2 + q2��1 + u�� j . �A5�

The factor ��−1� j−1+1� keeps only odd terms of the series.
Therefore, we can redefine the summation in Eq. �A5� in the
following form:

B1 =

g2	�4�p2SdSd−1�d − 1��d + 1

2
�

�2��2d4u2�1 + u�2d

��
j=0

� �2j + 1

2
�

�d + 2j + 2

2
�	m

� dk

k1+2�

�	
m

� dq

q1+2�

q2�2kq�2j

��k2 + q2��1 + u��2j+1 . �A6�

To proceed it is appropriate to make transformation of the
variables k, q to the new polar coordinates, namely: k
=s cos !, q=s sin !. This gives

B1 =

g2	�4�p2SdSd−1�d − 1��d + 1

2
�

�2��2d4u2�1 + u�2d

��
j=0

� �2j + 1

2
�

�d + 2j + 2

2
�

22j

�1 + u�2j+1

�	
m

� ds

s1+4�	
0

�/2

d! cos !2j−1−2� sin !2j+1−2�.

�A7�

The integral over the radial variable s is trivial, and the in-
tegral over angle ! can be found, e.g., in Ref. �77�. Then one
has

B1 =

g2	p2�1/2SdSd−1�d − 1��d + 1

2
�

�2��2d32u2�1 + u�2d
�

m
�4�1

�

��
j=0

� �2j + 1

2
�

�d + 2j + 2

2
�

22�

�1 + u�2j+1

��j − ��

�1

2
+ j − �� .

�A8�

In the end, the summation over j leads to the final result for
B1 which is given in Eq. �35�, where only the divergent part
is shown. ��j−�� in Eq. �A8� for j=0 has a pole with respect
to �, which gives the pole of the second order in B1 in Eq.
�35�.
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The second approach to the calculation of our two-loop
diagrams is as follows. We start with the expression for B1 as
represented in Eq. �A2�. Now using the well-known formula
of Feynman parametrization

1

A1
"1A2

"2
¯ An

"n
=

��
i=1

n

"i�
�
i=1

n

��"i�

	
0

1

¯ 	
0

1

du1 ¯ dun

�

��
i=1

n

"i − 1��
i=1

n

ui
"i−1

�
i=1

n

Aiui��i=1
n "i

, �A9�

B1 obtains the form

B1 =
g2	�4��d/2 + ��

�2��2d4u2�1 + u�2	
0

1

du1u1
d/2+�−1

�	 dk dq�p2 − �p · k�2/k2��q2 − �k · q�2/k2�
kd+2��Xq2 + 2Yk · q + Zk2�d/2+�+1 ,

�A10�

where

X = u1 + �1 − u1��1 + u� ,

Y = 1 − u1,

Z = �1 + u��1 − u1� . �A11�

The integration over q is now done using the general formula
�B1� given in Appendix B, namely,

	 dq
qiqj

�Xq2 + 2Yk · q + Zk2�d/2+�+1

=
�d/2X−1−d/2

��d/2 + � + 1�
1

k2��Z − Y2/X��

������
�ij

2
+
��� + 1�Y2

�XZ − Y2�
kikj

k2 � , �A12�

which yields

B1 =
g2	�4��d/2�d − 1�
�2��2d8u2�1 + u�2

����
��d/2 + ��

�	
0

1

du1
u1

d/2+�−1X−d/2−1

�Z − Y2/X��

�	 dk
�p2 − p · k/k2�

kd+4� . �A13�

The integration over vector k is now straightforward, after
which we have

B1 =
g2	Sd�

d/2p2�d − 1�2

�2��2d32u2�1 + u�2d��d/2 + ��
�

m
�4�

�
����
�
	

0

1

du1
u1

d/2+�−1X−d/2−1

�Z − Y2/X��
, �A14�

where m�L−1 represents the needed ir regularization. We are
interested only in the divergent �poles in �� part of the ex-
pression �A14�. After doing all needed expansions with re-
spect to � one has the final result the for the Feynman dia-
gram B1:

B1 =
Sd

2p2g2	�d − 1�2

�2��2d32u2�1 + u�3d2�m�4�

�� 1

�2 +
1

�� �1� −  �d/2� −
2

d�1 + u�d/2

�2F1d

2
,
d

2
;1 +

d

2
;

u

1 + u
� −

d�1 + u�
2

�	
0

1

du1
u1

d/2−1 ln�Z − Y2/X�
Xd/2+1 �� , �A15�

where  �n� is the logarithmic derivative of the gamma func-
tion, given by  �n�=���n� /��n�.

Thus, we have two different analytical representations of
the same Feynman diagram B1, namely, Eqs. �35� and �A15�.
The comparison of them leads to the nontrivial result for the
integral in Eq. �A15�, which is present in Appendix C in Eq.
�C1�. The comparison of the results for diagram B2 �see Fig.
3� obtained by these two methods yields other nontrivial re-
sults for some integrals. They are shown in Appendix C in
Eqs. �C2� and �C3�.

APPENDIX B

In this appendix we introduce the general integral formula
which was used in the previous appendix.

Theorem. Let V be a d-dimensional Euclidean vector
space over the field of real numbers R. Let l ,n�N �natural
numbers�, and k�i� for i=1,2 , . . . , l are vectors in V. Then for
an arbitrary l� l real matrix v js with det v�0, arbitrary vec-
tors a�i� �i=1,2 , . . . , l�, and arbitrary c ,"�R the following
general formula holds:
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−�

�

¯ 	
−�

� dk�1�
¯ dk�l�ki1

�q1�ki2

�q2�
¯ kin

�qn�

�visk
�i� · k�s� + 2a�i� · k�i� + c�"

=
�− 1�n�dl/2�det v�−d/2

��"� �
p=0

�n/2�
��" − dl/2 − �n/2� + p��c − �v−1�isa

�i� · a�s���n/2�+dl/2−"−p

��n/2� − p�!�2p + n�mod 2��!4�n/2�−p

� �
P�q1i1,q2i2,. . .,qnin�

�v−1�q1s1
ai1

�s1��v−1�q2s2
ai2

�s2� . . . �v−1�q2p+n�mod 2�s2p+n�mod 2�
a

i2p+n�mod 2�

�si2p+n�mod 2�
�

� �i2p+n�mod 2�+1i2p+n�mod 2�+2
�v−1�q2p+n�mod 2�+1q2p+n�mod 2�+2

¯ �in−1in
�v−1�qn−1qn

, �B1�

where the summation is taken over all permutations of the
indices i1 , i2 , . . . , in, kj

�s� and aj
�s� are the jth components of the

vectors k�s� and a�s�, �ij denotes the Kronecker delta, and
�n /2�=n /2 for even n and �n−1� /2 for odd n. Over all
dummy indices the corresponding summation is assumed.

We shall not present a detailed proof here because it is
rather large although straightforward; instead we give a short
recipe for it. To prove formula �B1� it is appropriate to use
mathematical induction. First, the theorem is correct in the
scalar case �n=0�. In this specific situation the formula is
well known �see, e.g., Ref. �25��

	
−�

�

¯ 	
−�

� dk�1�
¯ dk�l�

�visk
�i� · k�s� + 2a�i� · k�i� + c�"

=
�dl/2�det v�−d/2��" − dl/2�

��"�
�c − �v−1�isa

�i� · a�s��dl/2−".

�B2�

Now, let us suppose that formula �B1� is valid for n�N, n
�1. Then if one differentiates both sides of Eq. �B1� with
respect to ain+1

�qn+1� together with some cumbersome algebraic
manipulations the formula for n+1 is obtained.

APPENDIX C

In this appendix we present the integrals that were ob-
tained during the calculations of two-loop Feynman dia-
grams B1 and B2 which are shown in Fig. 3 �see Appendix A
for details of the calculations�. They are given in Eqs.
�C1�–�C3�. In addition we present here the analytical expres-
sions for integrals that were obtained by comparison of our
two-loop results for composite operators with those obtained
within the rapid-change model �32� �Eqs. �C4�–�C6��.

	
0

1

du1

u1
d/2−1 ln�1 + u��1 − u1� −

�1 − u1�2
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;1 +

d
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;
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1 + u
�
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−
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d
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1

�1 + u�2�
�d + 2��1 + u�2 � , �C1�
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d�d + 2�2 ,
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APPENDIX D

The explicit form of the coefficients Xj
x, j=1,2 ,3, x=K1,

K2a , . . . ,K2f �see Sec. VII�, in the MS scheme is the follow-
ing:

X1
K1 =

Sd

�2��d�m�2� d − 1

4u�1 + u�
g

�
, X2

K1 = 0, �D1�
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